Relative solubility of cations in Class F fly ash.

نویسندگان

  • Ann G Kim
  • George Kazonich
  • Michael Dahlberg
چکیده

Coal utilization byproducts (CUB), such as fly ash, contain cations that may be released during exposure to fluids such as acid rain or acid mine drainage. Researchers at the Department of Energy's National Energy Technology Laboratory (DOE/NETL) have conducted a long-term column leaching study of 32 Class F fly ash samples from pulverized coal (PC) combustion, and quantified the release of 19 cations in four leachants with a pH between 1.2 and 12. The relative solubility (M(L/T)) of each cation was defined as the total mass leached (M(L)) relative to the concentration (M(T)) of that element in the fly ash sample. A frequency distribution of relative solubility values was computed with ranges defined as insoluble, slightly soluble, moderately soluble, and very soluble. On the basis of this sample set, Ba, Cd, Fe, Pb, Sb, and Se in PC fly ash are insoluble. The elements Al, Be, Ca, Co, Cr, Cu, K, Mg, Mn, Na, Ni, and Zn are slightly to moderately acid soluble. Only Ca and Na are water soluble; As and Ca are soluble in the basic solution, The results of this study indicate that the extent to which cations in Class F PC fly ash can be leached by naturally occurring fluids is very limited.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preferential Acidic, Alkaline and Neutral Solubility of Metallic Elements In Fly Ash

In the US, over 100 million tons of coal utilization by-products (CUB) are generated annually. To determine if exposure of these materials to aqueous fluids poses an environmental threat, researchers at the National Energy Technology Laboratory (NETL) have conducted extensive leaching tests. Five 1 kg samples of 35 PC fly ashes have been leached with acid, neutral and alkaline solutions at an a...

متن کامل

Center for By-Products Utilization ENHANCEMENT IN MECHANICAL PROPERTIES OF CONCRETE DUE TO BLENDED ASH

This study was carried out to evaluate the effects of blended ash mixture on mechanical properties of concrete. In this study two reference mixtures were used. One of the mixtures was a no-fly ash mixture, and the other mixture contained 35% unblended Class C fly ash. Additional mixtures were composed of three blends of Class C and Class F fly ash while maintaining a total fly ash content of 40...

متن کامل

Adsorption of Cu(II) from Aqueous Solution on Fly Ash Based Linde F (K) Zeolite

The work focuses on the removing of Cu(II) from aqueous solution by Linde F(K) zeolite. The zeolite is synthesized from fly ash by hydrothermal process. The adsorption experiments discuss several factors including the optimal solution pH, zeolite dosage, adsorption temperature, adsorption kinetics and adsorption isotherm equation. The results show that, the optima...

متن کامل

Comparison Study of Class F and Class C Fly Ashes as Cement Replacement Material on Strength Development of Non-Cement Mortar

Cement is the most widely used material for construction. However, the cement production has a negative impact on the environment, as it is one of the contributors to global warming. The production of one ton of cement also produces approximately one ton of CO2. This encourages to the search for more environmentally friendly materials as cement replacement. The aims of this study are to compare...

متن کامل

Competitive Adsorption of Cu, Ni, Pb, and Cd from Aqueous Solution Onto Fly Ash-Based Linde F(K) Zeolite

The reaction of fly ash with a KOH solution was used to synthesize Linde F(K) zeolite, following which Fourier transform infrared spectroscopy were used to characterize the crystalline material. The competitive adsorption of Cu, Ni, Pb, and Cd onto this zeolite was subsequently studied in quaternary solution systems. The results show that the metal removal rates gradually increase with incr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 37 19  شماره 

صفحات  -

تاریخ انتشار 2003